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Abstract. The critical temperature is calculated as a function of #hg,/J,, ratio for an

S = 5/2 Heisenberg spin lattice with antiferromagnetic ordering of types | and Il on a
face-centred cubic latticeJ,,, and J,,,,, represent, respectively, the nearest- and next-nearest-
neighbour exchange constants. Both possibilities for ordering of typg,llantiferromagnetic

and ferromagnetic, are considered. The critical region is studied by applying the Pad
approximant method to the corresponding high-temperature series expansion of the staggered
susceptibility. The results presented here provide a useful tool for a straightforward interpretation
and understanding of experimental data. The approach is applied to various experimental systems
and the values obtained compared with those provided by other approximations.

1. Introduction

The face-centred cubic (f.c.c.) lattice is of considerable interest in the theory of
antiferromagnetism. This interest arises because of the lack of stability of the ordered
structure under only nearest-neighbour (n.n.) interactions. The reason is the inherent
‘frustration’ that the f.c.c. Heisenberg spin lattice with antiferromagnetic n.n. interactions
exhibits—i.e., the inability to simultaneously satisfy all the antiferromagnetic bonds. In
fact, such a lattice is one of the basic models of topologically frustrated spin systems.
Next-nearest-neighbour (n.n.n.) exchange interactions stabilize the magnetic order on an
f.c.c. lattice and have been used by different authors to study the magnetic behaviour of the
antiferromagnetic f.c.c. Heisenberg spin lattice [1-3]. From the theoretical point of view the
nature of the transition in the f.c.c. Heisenberg antiferromagnet remains less clear. Thus,
Diep and Kawamura [4] and Henley [5] have concluded that the transition is first order,
in contrast with Ferandezet al [6], who found a second-order character. No conclusive
demonstrations have been given by authors claiming that the transition is first/second order
against the results of those claiming the transition to be second/first order. The method
we are using here (high-temperature series expansion extrapolated wittapaximants

[7-9]) cannot offer further clarification on this particular point either. Since this method
only applies in the paramagnetic zone, the critical region can be approximated only from
this zone and not from the ordered zone. From experimental data some f.c.c. compounds
have been described to undergo a first-order transition (e.g.[U@) while the character

of the transition for some others (e.g. CeSe and CeTe [11]) has been reported to be of
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second order. Therefore both first- and second-order kinds of transition have been found
experimentally.

Various types of antiferromagnetic ordering arrangement have been described for an
f.c.c. lattice. A significant basis for classification of these ordering schemes is one involving
the n.n. and n.n.n. spin configurations. Ordering of type | has two-thirds of the n.n. of a
reference ion coupled antiferromagnetically while the remainder of the n.n.s as well as
all the n.n.n.s are coupled ferromagnetically (see figure 1). In ordering of type Il half
the n.n.s are antiferromagnetically and half ferromagnetically coupled to the reference ion
while all n.n.n.s are coupled antiferromagnetically. Ordering of type Il has the same
n.n. configuration as ordering of type I, namely two-thirds antiparallel, one-third parallel.
However, the n.n.n.s are arranged one-third antiparallel, two-thirds parallel, instead of all
parallel as in ordering of type I. In thé,,, versusJ,, phase diagram corresponding to
these three kinds of orderind,, is antiferromagnetic in character for types | and Il while
it can be antiferromagnetic or ferromagnetic in ordering of the second kind. The exchange
constantJ,,,, is ferromagnetic in character for ordering of type | while antiferromagnetic
for type Il and Ill. Moreover type Il is stabilized by a comparatively large second- to
first-neighbour interaction, generally,,../ J..| > 0.5, while ordering of type Il requires a
smaller ratio, usuallyJ,,,,/J.»| < 0.5.

(a) (b) (c)

Figure 1. Antiferromagnetic ordering of (a) the first kind, (b) the second kind and (c) the third
kind for an f.c.c. lattice. The filled circles represent spins up and the open circles spins down.

The properties of antiferromagnetic ordering on an f.c.c. lattice have been discussed
using different theoretical approximations, for example the mean-field method [12], spin-
wave theory [5, 13], Green's functions [14-16] and Monte Carlo simulations [1, 4,6, 17],
which have given alternative and independent ways to obtain successive approximations to
critical parameters. Unfortunately the limited availability of compounds has resulted in a
relatively little experimental work in this field, partially released = 5/2 [2, 18-20].
However, the recent emergence of novel materials [21-24] opens new opportunities for
such studies both to provide the best possible theoretical predictions for comparison with
experiments and to pave the way for a better theory.

In this work we shall consider afi = 5/2 Heisenberg Hamiltonian with n.n. and n.n.n.
interactions, and calculate the critical temperature as a function of the exchange constants
for antiferromagnetic ordering on an f.c.c. lattice. The @agproximant analysis of the
exact high-temperature expansions of the magnetic susceptibilities has been shown to be
a useful method for the estimation of critical temperatures for real magnetic systems [7].
We shall use this approximation to analyse the critical region. The method considered does
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not use as premise the first- or second-order nature of the transition [7-9]. However the
mathematical apparatus related to the method uses a continuous function. Therefore the
estimation of parameters associated with the critical region {j.ewould be valid, in a

strict consideration, for compounds experiencing a continuous transition. This point should
be borne in mind when comparison with experimental data is performed. The predictions for
the magnetic exchange constants are expected to be less influenced by the first or second
order of the antiferromagnetic transition. On the other hand, the study of thversus

Jun/ Jun phase diagram for type Il has been usually restricted in the literature to the case
of J,, antiferromagnetic [13,16]. Moreover, the application of the final results of some
available theories to the analysis of experimental data requires the knowledge of further
parameters [15, 16]. This work intends to provide a valid and straightforward interpretation
of experimental data. Comparison with experimental work is also considered.

2. Calculations and results

Although no exact solutions are available in three dimensions foSthe5/2 Heisenberg

model with antiferromagnetic ordering on an f.c.c. lattice, it is feasible to obtain exact
series expansions for thermodynamic properties in a variable suchi7as The method

of exact power-series expansions was extended by Péna to include both n.n. and
n.n.n. interactions for the above-mentioned model [25]. The series expansions of the
susceptibility in zero magnetic field¢(K) = Y a,K" with n > 0, were derived to

the sixth power in reciprocal temperature for types I, Il and Ill. Since we are interested
in estimating critical points we have used the ®agpproximant (P.A.) method [7-9] to
study the dependence of the critical temperature on the relative strength of the first- and
second-neighbour interactions. In this work we have used P.A.s as a method of approximate
analytic continuation. This method enlarges the convergency radius of the series expansion
and may give information on the function in the critical region.

A method of locating an antiferromagnetic singularity uses the series expansion not of
the physical susceptibility but of the so-called staggered susceptibility. The advantage of this
procedure is that the staggered susceptibility has a strong singularity aééhésperature,
which may be determined following methods similar to those used for a ferromagnetic
singularity. Thus, we have used the high-temperature series expansion in powers of inverse
temperature reported above and calculated by Peha. The expression is

B}/ (KX} =) {an(X, )K"}

where the summation runs from=0ton =6, X = S(S+ 1), x; = (x'[Junl)/(Ng?u3),

K = J,,/kT anda = J,,,/J... The staggered susceptibility is representedybyand

the coefficients of the series, which are functions of ffieand o parameters, by,.

For the numerical computation we have considered the f.c.c. lattice with n.n. exchange
J.ns N.NN. exchangd,,,,, and all other interactions equal to zero. Throughout this work,
we have adopted the convention of taking a general exchange constapsitive for
ferromagnetic interaction and therefore negative for antiferromagnetic interaction. The
Hamiltonian considered is of the type

H=-2), Y 88 —2Jun Y Sc+Si

where the first and second summations run over all pairs of, respectively, nearest and next-
nearest neighbours.

The simplest assumption that one can make concerning the nature of the singularity of
the magnetic susceptibility is that in the neighbourhood of the critical point the magnetic
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susceptibility exhibits an asymptotic behaviour
V(K) ~ {A(K. — K)77}

where K, represents the critical poing, the critical exponent and the amplitude. In our
casey is known and equal to 1.43 [26, 27]. Since

(WKW ~ (AYY )(K, — K))

representations of the series expansion®¢K)Y” by P.A.s would enable us to fin&.

by finding the positions of the zeros of the denominator. We have followed this procedure
for several values of the first- and second-neighbour exchange constants and ordering of
types I, Il and lll. As a result of these calculations we have obtained the critical temperature
T, as a function of the first- and second-neighbour exchange constants for thé £c5;/2
Heisenberg model with antiferromagnetic ordering of types | and Il. The values are given
in table 1. No acceptable convergence was found for type Ill. This is because several poles
were significant and none could be estimated with sufficient accuracy to be able to extract it
successfully. More than one pole can be also important in the neighbourhood of a transition
between two forms of ordering, as for example takes placeffgy/J..| =~ 0.5 on ordering

of the second kind.

Table 1. Calculated values ofl,,/kT, as a function of theJ,,,/J,, ratio for anS = 5/2
Heisenberg model with antiferromagnetic ordering of types | and Il on an f.c.c. lattice. (All the
values shown in the table are dimensionless). The critical temperature is represefitedrioly

the n.n. and n.n.n. exchange constants by, respectiyglyk and J,,,/k. (The Hamiltonian to
which the exchange constants are referred is of the {/pe —2J,, > S; - Sj —2Juun Y Sk +S1)

Jnrm/\]rm (Jnn/ch)type 1 Jnnn/Jnn (Jnn/ch)type 11

001 -0.185 —40 00102
—002 -0.170 -36 00114
004 —0.146 -32 00130
006 —0.140 -238 00149
008 —0.130 —24 00178
—01  -0124 -2.0 00218
—02  —0.080 -18 00247
—-04  —0.0513 -16 00288
—~06  —0.0393 —14 0033
-08  —0.0310 —12 0055
~1.0  —0.0263 0.7 ~0.103
~12  —0.0230 0.8 ~0.079
1.4 —0.0204 1.0 —0.052
16  —0.0183 1.2 —0.040
18  —0.0167 1.4 —0.033
-20  -0.0153 1.6 —0.0277
—24 00131 1.8 —0.0242
28  —00115 2.0 —0.0215
-32  -0.0103 2.4 —0.0176
36  —0.0092 2.8 —0.0150
40  —0.0084 3.0 —0.0139
3.2 —0.0129
3.6 —0.0114
4.0 -0.0102

The value of|J,,/kT.| for type Il and |J,.,/Junl = 1.4 is independent of the

antiferromagnetic or ferromagnetic characterJgf, as reflected in table 1 and figure 2.
Below that value|J,,/kT.| seems to be not the same for antiferromagnetic or ferromagnetic
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Figure 2. The dependence df/,,,/kT.| on the|J,,,/Jun| ratio for anS = 5/2 Heisenberg
model with antiferromagnetic ordering of type | or Il on an f.c.c. lattice. The n.n. and n.n.n.
exchange constants are represented by, respectiyglyk and J,,,,/k while T, represents the
critical temperature.

Jan. This result suggests a difference in the behaviour of the system, depending on the sign
of J,,. If we consider type Il withJ,,, < 0 and the valueJ,,../J..| is decreased, ordering
of type lll is reached fotJ,,../J..| < 0.5. The reason is the similarity, regarding exchange
constants signs, between type Il with), < 0 and type Ill. At this point it is worth remarking
that|J,.../Jun| is larger than 0.5 for ordering of the second kind and smaller than that value
for ordering of the third kind. On the other hand if type 1l wif), > 0 is considered and
|Junn/Jun| 1S decreased below 0.5 then type Il ordering can never be reached as happened
in the previous case (type IV, < 0). The reason is that type Ill requires all the exchange
interactions to be antiferromagnetic in charactéy, < O, J,., < 0) while in the case
considered now (type IlJ,, > 0) the interaction between n.n.s is ferromagnetic. Therefore,
the behaviour of the system for smal,,,./J..| values is expected not to be the same for
J.n < 0 andJ,, > 0. In addition the evolution ofJ,,/kT.| with the ratio|J,.,/ .|
is shown in figure 2 for ordering of the first and second kinds. This figure beautifully
illustrates the fact that a$,,,, decreases with respect to a reference constant valug, of
the system becomes less stabl, (/kT.| increases).

Up to here we have studied the critical behaviour of$ar= 5/2 Heisenberg model
with antiferromagnetic ordering on an f.c.c. lattice from a high-temperature approximation
(T > T.). It would be interesting to compare the results shown in table 1 and figure 2
with an analysis of the critical region from low temperatures, thaf is< 7.. Lines
investigated the antiferromagnetic behaviour in the f.c.c. cubic lattice using a spin-wave
method [13]. He devised a method for estimating the critical temperature as a function
of the ratio of n.n.n. exchangé,,, to n.n. exchangd,,. The results of both procedures,
high-temperature series expansion extrapolated with P.A.s and the spin-wave method from
Lines, are depicted together in figure 3 for comparison. Note that the agreement between
low- and high-temperature approximations is better/worse for larger/sniafietJ/,,| and
| Junn/ Jun| Values (a more/less stable system).



11146 M C Morén

1 —

-0.05 |

/ kT

-0.10 |

]nn

-0.15 |-

V : this work

O : spin-wave method

020 Lo v v T

Figure 3. A comparison between a spin-wave method and the results presented in this work for
an S = 5/2 Heisenberg model with antiferromagnetic ordering of type | or Il on an f.c.c. lattice.
The n.n. and n.n.n. exchange constants are represented by, respegivetyand J,,,.,/ k while

T, represents the critical temperature.

The study of the critical temperature versus exchange constants for the Heisenberg
model on anS = 5/2 f.c.c. lattice with antiferromagnetic ordering of type Il has been
usually restricted in the literature to the case f antiferromagnetic [13,16]. On the
other hand the application of the final results of some available theories to the analysis of
experimental data is not as straightforward as desired. The available approximations, that
for the model we consider here give the critical temperature as a function of the exchange
constants, require knowledge of the Curie—Weiss congiaiof, the compound to which the
theory is applied [15, 16]. This additional parameter is not required in the work presented
here (see table 1 and figure 2).6lfs obtained from experimental data further measurements
may be needed, while if it is calculated using the mean-field theory [12] the knowledge of
both J,,, and J,,,, is then required.

3. Comparison with experimental work

Antiferromagnetic behaviour in a f.c.c. lattice has been reported for various compounds,
for example KReCk [28, 29], K;ReBrs [28], MnTe, [30, 31], [CaNH3)s][FeCls] [20] or
the alloy MnFeN; [24] for ordering of type I, CoO [32,33], MnO [3,33], NiO [33, 34],
a-MnS [2, 35] or the alloy MnFgNi [24] for ordering of type Il and8-MnS [36], MnS
[31] or KzIrClg [37, 38] for ordering of type Ill. In this section the results obtained above
are applied to some real f.c.§& = 5/2 systems such as-MnS, MnO, MnTe and
[Co(NH3)6][FeClg]. The predictions are expected to reproduce the experimental values
depending on the continuous or discontinuous character of the transition. Unfortunately,
information about the first- or second-order character of the magnetic transition have only
been found in the literature for MnO [39].

The approximation we present in this work is applied in the following to two compounds
and the results compared with those obtained by another theoretical method. The random-
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phase Green function approximation has been applied to the calculation of superexchange
constants in systems such as MnO andinS [16]. In the case of MnO the exchange
parameters have also been determined from spin-wave calculations [19, 40, 41]. This low-
temperature approximatiail” < T.) gives for this compound,,, andJ,,,, values which are

in fair agreement with those deduced from the random-phase Green function approximation
[3]. Neutron diffraction experiments suggest that the magnetic structure of both MnO and
«-MnS is of type Il [33, 35]. We have applied the results shown in table 1 to deterfpjne
Junn/ Jun @nd J,,,, / k for these two compounds by using data reported in the literature [2, 3].
The results are presented in table 2. In this table the first line correspondingviteS

or MnO contains experimental data f@: and calculated data foy,,,/J., and J,,./k

from the random-phase Green function. There is a good agreement in the prediction of
the magnetic exchange constants as shown in table 2. The predictionwhich is quite

good for a-MnS, shows some differences in the case of Mr&¥%). In this particular

case the discrepancies between experimental and calcUlatemiues could be influenced

by the first-order character of the transition reported for this compound [39].

Table 2. A comparison with experimental work done on somfe = 5/2 Heisenberg
antiferromagnets with ordering of types | and Il. The critical temperature is represented by
T. while J,,,/k and J,,,,, / k represent, respectively, the n.n. and n.n.n. exchange constants. (The
Hamiltonian to which the exchange constants are referred is of theHype—2J,, >~ S; - S; —

2Juun Y Sk - Si) MFT stands for mean-field theory.

Compound Ordering 7. (K) Junn/In - Junn/k (K)  Ref.
MnTex type | 83 +0.27 -1.6 [30]+ MFT
81 -0.25 +15 this work
[Co(NH3)g][FeClg]?  type | 0.50 —0.073 +0.005 [20]
0.51 -0.073 +0.005 this work
a-MnS type Il 147 +1.77 —6.2 [2]
148 +1.83 —-6.4 this work
MnO type Il 117 +1.10 —-5.5 [3]
109 +1.14 —-5.7 this work

2 Jun/k and J,,,, / k are calculated respectively from [20] and this work.

In this paragraph the results obtained in section 2 are applied to overcome the problems
shown by the mean-field theory regarding the model considered here. Neutron diffraction
experiments indicate that MnJerders as an f.c.c. antiferromagnet of type | [31]. Lin
and Hacker have calculated the n.n. and n.n.n. exchange constants by applying the mean-
field theory to the experimental valués = —472 K and7, = 87.2 K [30]. Using
this approach we have performed a similar calculation but uging= 83 K instead of
T. = 87.2 K. The reason is that the critical temperature associated with the antiferromagnetic
ordering of a system corresponds both to the maximum of the peak in the heat capacity
measurementd,. = 83 K for MnTe, [30], and to the valués x /6T ),..., Wherey represents
the magnetic susceptibility. However the maximum in the susceptibility versus temperature
curve, T, = 87.2 for MnTe, [30], is a worse approximation to determine the critical
temperature of an antiferromagnetic system [42]. The values we have obtained for the
exchange constants are shown in table 2. Although the n.n. interaction is found to be
antiferromagnetic in character, mean-field theory indicates that the n.n.n. interaction is also
antiferromagnetic, which is in discrepancy with magnetic ordering of type I. The mean-
field theory is shown to be far too crude an approximation to give satisfactory quantitative
results. Therefore, we have calculatgg,/k by using the results obtained in section 2 and
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the data reported in table 2. Following this procedure a valug,gf k = 1.5 K is obtained,
indicating a ferromagnetic interaction between n.n.n.s, which is in good agreement with the
antiferromagnet ordering of type | exhibited by MiTe

In the following we present another example of the application of this method to
interpret experimental data. Up to here the results presented in this work have been applied
to purely inorganic systems. [Q§H3)g][FeCls] can be regarded as a close example of
a molecular system. Its behaviour would then be of interest in the general area of the
recently named ‘molecular magnetism’ [43, 44]. The magnetic superexchange pathway runs
through not only chemical bonds but also softer interactions. Alternating current (a.c.)
magnetic susceptibility measurements performed on this compound as a function of the
temperature suggest that [@QdH3)s][FeCls] orders as an antiferromagnet below 0.5 K. The
only magnetic ion present in the compound is Fe(lll) since the Co(lll) ions are of low spin
and therefore havé = 0. The n.n. exchange constaf}/k = —0.068 K, has been obtained
considering a high-temperature series expansion of the physical susceptibility extrapolated
with P.A.s [20]. However, this method was found to be not sensitive enough to changes in
the n.n.n. exchange constant. Differdpy, values gave the same fit to the experimental data
of [Co(NH3)g][FeCls]. The approximation reported in this work can be used to calculate
without ambiguity the n.n.n. exchange constant. A value,gf/k = +0.005+ 0.001 K
is obtained by using table 1 and considering an ordering of type | together with,the
and 7, data reported in the literature. A magnetic ordering of the third kind is unstable
since the ratiol0/T.| for [Co(NH3)g][FeCls], which amounts to 9.26( = —4.6 K for
this compound [20]), is smaller than the low@y/ T,| limit of existence of type Il [13].
On the other hand, the magnetic superexchange pathways {NIFGR;][FeClg] are much
more favourable between nearest than next-nearest neighbours. Therefore an ordering of
the second kind must be also rejected since the corresponiding/,, ratio is too high
(Junn/Jun > 0.5). The critical temperature has been calculated’as- 0.51 K from J,,,,
J.un @nd the results of section 2. This calculated value is in good agreement with the
experimental datal, = 0.50 K (see table 2).

4. Conclusions

The critical temperature has been calculated as a function of the n.n. and n.n.n. exchange
interactions for antiferromagnetic ordering of types | and Il andSa& 5/2 Heisenberg
model on an f.c.c. lattice. Both options for type J},, antiferromagnetic and ferromagnetic,

are included. High-temperature series expansions extrapolated withapadoximants are
shown to be a convenient method to provide valid estimations of critical temperatures
for real magnetic systems. The application of these calculations to some experimental
systems and the comparison with other approximations support the validity of the results
we have obtained. These theoretical predictions provide a useful tool for a straightforward
interpretation and understanding of experimental data. We hope it will be useful for
experimental solid state physicists and chemists interested in magnetic properties of
materials. Similar studies for smaller spin values are under consideration.
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Appendix

Coefficientsa, (X, @) of the staggered susceptibility for an f.c.c. lattice and ordering of
types I, Il and Il (from [25]).

A.l. Typel
1 X
4 2X 1 -10 +8
=1 =—_-X(2-3 ==
ao ax 3 ( ) a2 =g Y o6
o? -9 460
2 3
1 ¥ x 1 X X X
1 —126 42496 —448  —2400
=X 1 _ngg I?gg —ire w= X +2256 +20064 —16896
135 ¢, 1360 —3840 405 o2 +5304 —41808 +35712
* 136 486 11464 o® —1152 424192 —104448
* o* | —135 +3060 —14640 +27600
1 X x? x3 x4
1 +1152 —42276 —3636 +108792 —141392
16X @ —21924 +670236 —73248 -514752
5= oeor o —30324 —24094 +2482032 —2179072
B —50820 +943180 —3287 760 +2993 760
o 49450 —303030 42219280 —5651520
o5 | +1296 —38961 +282024 —828300 +1128360
1 X X? X3 x4 x5
1 22356 +1144152 —8973444 42994680 +13853632 —15163392
a +395280 —17460768 —2836480 +61894656 —77919232
o= 2N a? +626472 —24283800 +169210608 —26 256 384 —125701 632
127575 o3 +535680 —5024160 —67 105920 4442 615040 —394 024 960
o +1030248 —29 841432 +184 069 408 —432 265 728 +-392 003 328
b —165888 16619968 —71298432 +299 235840 —526 663 680
o | —26082 4941436 —9367506 +36934092 —78518688 +83019648
A.2. Type ll
2X 1
apg=1 a1 = —4Xa ap = — -
9 «
Ot2
2 3
1 x x2 1 X X X
1 45 _180 480 - 1 —162 +4392 +4560 —4704
az= % . 1360 4720 a= X —1152 —1440
135 o 405 o2 +2880 —7632 —24192
3
o® +9 4186 —1464 *,

o —27 436 —5856 +27600
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(3]
(4]
(5]
(6]

Lines M E and Jong E D 1965Phys. RevA 1391313
Diep H T and Kawamura H 198Phys. RevB 40 7019

Henley C L 1987 J. Appl. Phys61 3962

Ferrdndez J F, Farach H A, Poole P and Puma M 1D88s. RevB 27 4274

1 X X2 X3 x4
1 +1512 —66717 +227913 +417480 —161280
16X @ +5859 —21756 —434112 —809088
5= e o? —21105 +188790 —55440 —766080
o8 —17640 —177660 4294000 +1 058 400
4
o
o +216 —2241 —-25971 +345300 —1128360
1 X X2 x3 x4 X5
1 —29808 +1746576 —18690696 +2077656 +36640128 —21669 888
o —60912 +464688 +35671104 +8042496 —103907 328
a6 = 2X 42 +452736 —17 045928 +18005904 +36282624 —61705728
127575 o8 +241056 4905184 —4104576 —5564160 —5160960
ot +292464 —3635568 +21718272 —10453248 —112 096512
5
o
ob —3726  +76140 +50778 +4618572 —33384288 +83019648
A.3. Type lll
4 2X
apg=1 @ =-3X2-a) az:?.i
a2
2 3
1 x 2 1 X X X
1 —126 +2496 —448 —2400
P ! +32 fégg :;Zg a= X @ +1200 47136 —6144
135 ¢, 280 405 42 +4440 —10896 —18816
o3 | 427 102 —152 o ~864 15504 46144
ot —99 +1380 +704 1584
1 X X2 X3 x4
1 +1152 —42276  —3636 +108792 —141392
16X @ —13293 1496622 4223104 588224
a5 = oo’ o? —25704 —134414 —4368 —534912
o8 —39480 +433860 —78960 —1087520
ot +6930 —128870 —11760 +190400
o 4936 —20001 +29559 460180 —9160
1 X X2 x3 x4 X5
1 —22356 41144152 —8953668 +2982136 +13649344 —15407104
o +248688 —12189312 +13189760 +38328320 —67 963904
a6 = 2X 42 +537696 —18744 144 +79263408 +71439872 —133357056
127575 8 +417888 —991776 —20403712 —43662080 —94230528
ot +781272 —17295864 +34 134496 +36555776 —74670336
o® —119808 +3205248 —8232192 —12577280 +3358720
ob —18630 4510732 —2472846 —1232820 +2897696  +102272
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