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Abstract. The critical temperature is calculated as a function of theJnnn/Jnn ratio for an
S = 5/2 Heisenberg spin lattice with antiferromagnetic ordering of types I and II on a
face-centred cubic lattice.Jnn and Jnnn represent, respectively, the nearest- and next-nearest-
neighbour exchange constants. Both possibilities for ordering of type II,Jnn antiferromagnetic
and ferromagnetic, are considered. The critical region is studied by applying the Padé
approximant method to the corresponding high-temperature series expansion of the staggered
susceptibility. The results presented here provide a useful tool for a straightforward interpretation
and understanding of experimental data. The approach is applied to various experimental systems
and the values obtained compared with those provided by other approximations.

1. Introduction

The face-centred cubic (f.c.c.) lattice is of considerable interest in the theory of
antiferromagnetism. This interest arises because of the lack of stability of the ordered
structure under only nearest-neighbour (n.n.) interactions. The reason is the inherent
‘frustration’ that the f.c.c. Heisenberg spin lattice with antiferromagnetic n.n. interactions
exhibits—i.e., the inability to simultaneously satisfy all the antiferromagnetic bonds. In
fact, such a lattice is one of the basic models of topologically frustrated spin systems.
Next-nearest-neighbour (n.n.n.) exchange interactions stabilize the magnetic order on an
f.c.c. lattice and have been used by different authors to study the magnetic behaviour of the
antiferromagnetic f.c.c. Heisenberg spin lattice [1–3]. From the theoretical point of view the
nature of the transition in the f.c.c. Heisenberg antiferromagnet remains less clear. Thus,
Diep and Kawamura [4] and Henley [5] have concluded that the transition is first order,
in contrast with Ferńandezet al [6], who found a second-order character. No conclusive
demonstrations have been given by authors claiming that the transition is first/second order
against the results of those claiming the transition to be second/first order. The method
we are using here (high-temperature series expansion extrapolated with Padé approximants
[7–9]) cannot offer further clarification on this particular point either. Since this method
only applies in the paramagnetic zone, the critical region can be approximated only from
this zone and not from the ordered zone. From experimental data some f.c.c. compounds
have been described to undergo a first-order transition (e.g. UO2 [10]) while the character
of the transition for some others (e.g. CeSe and CeTe [11]) has been reported to be of
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second order. Therefore both first- and second-order kinds of transition have been found
experimentally.

Various types of antiferromagnetic ordering arrangement have been described for an
f.c.c. lattice. A significant basis for classification of these ordering schemes is one involving
the n.n. and n.n.n. spin configurations. Ordering of type I has two-thirds of the n.n. of a
reference ion coupled antiferromagnetically while the remainder of the n.n.s as well as
all the n.n.n.s are coupled ferromagnetically (see figure 1). In ordering of type II half
the n.n.s are antiferromagnetically and half ferromagnetically coupled to the reference ion
while all n.n.n.s are coupled antiferromagnetically. Ordering of type III has the same
n.n. configuration as ordering of type I, namely two-thirds antiparallel, one-third parallel.
However, the n.n.n.s are arranged one-third antiparallel, two-thirds parallel, instead of all
parallel as in ordering of type I. In theJnnn versusJnn phase diagram corresponding to
these three kinds of ordering,Jnn is antiferromagnetic in character for types I and III while
it can be antiferromagnetic or ferromagnetic in ordering of the second kind. The exchange
constantJnnn is ferromagnetic in character for ordering of type I while antiferromagnetic
for type II and III. Moreover type II is stabilized by a comparatively large second- to
first-neighbour interaction, generally|Jnnn/Jnn| > 0.5, while ordering of type III requires a
smaller ratio, usually|Jnnn/Jnn| < 0.5.

Figure 1. Antiferromagnetic ordering of (a) the first kind, (b) the second kind and (c) the third
kind for an f.c.c. lattice. The filled circles represent spins up and the open circles spins down.

The properties of antiferromagnetic ordering on an f.c.c. lattice have been discussed
using different theoretical approximations, for example the mean-field method [12], spin-
wave theory [5, 13], Green’s functions [14–16] and Monte Carlo simulations [1, 4, 6, 17],
which have given alternative and independent ways to obtain successive approximations to
critical parameters. Unfortunately the limited availability of compounds has resulted in a
relatively little experimental work in this field, partially released forS = 5/2 [2, 18–20].
However, the recent emergence of novel materials [21–24] opens new opportunities for
such studies both to provide the best possible theoretical predictions for comparison with
experiments and to pave the way for a better theory.

In this work we shall consider anS = 5/2 Heisenberg Hamiltonian with n.n. and n.n.n.
interactions, and calculate the critical temperature as a function of the exchange constants
for antiferromagnetic ordering on an f.c.c. lattice. The Padé approximant analysis of the
exact high-temperature expansions of the magnetic susceptibilities has been shown to be
a useful method for the estimation of critical temperatures for real magnetic systems [7].
We shall use this approximation to analyse the critical region. The method considered does
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not use as premise the first- or second-order nature of the transition [7–9]. However the
mathematical apparatus related to the method uses a continuous function. Therefore the
estimation of parameters associated with the critical region (i.e.Tc) would be valid, in a
strict consideration, for compounds experiencing a continuous transition. This point should
be borne in mind when comparison with experimental data is performed. The predictions for
the magnetic exchange constants are expected to be less influenced by the first or second
order of the antiferromagnetic transition. On the other hand, the study of theTc versus
Jnnn/Jnn phase diagram for type II has been usually restricted in the literature to the case
of Jnn antiferromagnetic [13, 16]. Moreover, the application of the final results of some
available theories to the analysis of experimental data requires the knowledge of further
parameters [15, 16]. This work intends to provide a valid and straightforward interpretation
of experimental data. Comparison with experimental work is also considered.

2. Calculations and results

Although no exact solutions are available in three dimensions for theS = 5/2 Heisenberg
model with antiferromagnetic ordering on an f.c.c. lattice, it is feasible to obtain exact
series expansions for thermodynamic properties in a variable such as 1/T . The method
of exact power-series expansions was extended by Pirnieet al to include both n.n. and
n.n.n. interactions for the above-mentioned model [25]. The series expansions of the
susceptibility in zero magnetic field,9(K) = ∑

anK
n with n > 0, were derived to

the sixth power in reciprocal temperature for types I, II and III. Since we are interested
in estimating critical points we have used the Padé approximant (P.A.) method [7–9] to
study the dependence of the critical temperature on the relative strength of the first- and
second-neighbour interactions. In this work we have used P.A.s as a method of approximate
analytic continuation. This method enlarges the convergency radius of the series expansion
and may give information on the function in the critical region.

A method of locating an antiferromagnetic singularity uses the series expansion not of
the physical susceptibility but of the so-called staggered susceptibility. The advantage of this
procedure is that the staggered susceptibility has a strong singularity at the Néel temperature,
which may be determined following methods similar to those used for a ferromagnetic
singularity. Thus, we have used the high-temperature series expansion in powers of inverse
temperature reported above and calculated by Pirnieet al. The expression is

{3χs}/{|K|X} =
∑

{an(X, α)Kn}
where the summation runs fromn = 0 to n = 6, X = S(S + 1), χs = (χ †|Jnn|)/(Ng2µ2

B),
K = Jnn/kT and α = Jnnn/Jnn. The staggered susceptibility is represented byχ † and
the coefficients of the series, which are functions of theX and α parameters, byan.
For the numerical computation we have considered the f.c.c. lattice with n.n. exchange
Jnn, n.n.n. exchangeJnnn, and all other interactions equal to zero. Throughout this work,
we have adopted the convention of taking a general exchange constant,J , positive for
ferromagnetic interaction and therefore negative for antiferromagnetic interaction. The
Hamiltonian considered is of the type

H = −2Jnn

∑
Si · Sj − 2Jnnn

∑
Sk · Sl

where the first and second summations run over all pairs of, respectively, nearest and next-
nearest neighbours.

The simplest assumption that one can make concerning the nature of the singularity of
the magnetic susceptibility is that in the neighbourhood of the critical point the magnetic
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susceptibility exhibits an asymptotic behaviour

9(K) ≈ {A(Kc − K)−γ }
whereKc represents the critical point,γ the critical exponent andA the amplitude. In our
caseγ is known and equal to 1.43 [26, 27]. Since

{9(K)}1/γ ≈ {A1/γ /(Kc − K)}
representations of the series expansions of9(K)1/γ by P.A.s would enable us to findKc

by finding the positions of the zeros of the denominator. We have followed this procedure
for several values of the first- and second-neighbour exchange constants and ordering of
types I, II and III. As a result of these calculations we have obtained the critical temperature
Tc as a function of the first- and second-neighbour exchange constants for the f.c.c.S = 5/2
Heisenberg model with antiferromagnetic ordering of types I and II. The values are given
in table 1. No acceptable convergence was found for type III. This is because several poles
were significant and none could be estimated with sufficient accuracy to be able to extract it
successfully. More than one pole can be also important in the neighbourhood of a transition
between two forms of ordering, as for example takes place for|Jnnn/Jnn| ≈ 0.5 on ordering
of the second kind.

Table 1. Calculated values ofJnn/kTc as a function of theJnnn/Jnn ratio for an S = 5/2
Heisenberg model with antiferromagnetic ordering of types I and II on an f.c.c. lattice. (All the
values shown in the table are dimensionless). The critical temperature is represented byTc and
the n.n. and n.n.n. exchange constants by, respectively,Jnn/k andJnnn/k. (The Hamiltonian to
which the exchange constants are referred is of the typeH = −2Jnn

∑
Si ·Sj −2Jnnn

∑
Sk ·Sl )

Jnnn/Jnn (Jnn/kTc)type I Jnnn/Jnn (Jnn/kTc)type II

−0.01 −0.185 −4.0 0.0102
−0.02 −0.170 −3.6 0.0114
−0.04 −0.146 −3.2 0.0130
−0.06 −0.140 −2.8 0.0149
−0.08 −0.130 −2.4 0.0178
−0.1 −0.124 −2.0 0.0218
−0.2 −0.080 −1.8 0.0247
−0.4 −0.0513 −1.6 0.0288
−0.6 −0.0393 −1.4 0.033
−0.8 −0.0310 −1.2 0.055
−1.0 −0.0263 0.7 −0.103
−1.2 −0.0230 0.8 −0.079
−1.4 −0.0204 1.0 −0.052
−1.6 −0.0183 1.2 −0.040
−1.8 −0.0167 1.4 −0.033
−2.0 −0.0153 1.6 −0.0277
−2.4 −0.0131 1.8 −0.0242
−2.8 −0.0115 2.0 −0.0215
−3.2 −0.0103 2.4 −0.0176
−3.6 −0.0092 2.8 −0.0150
−4.0 −0.0084 3.0 −0.0139

3.2 −0.0129
3.6 −0.0114
4.0 −0.0102

The value of |Jnn/kTc| for type II and |Jnnn/Jnn| & 1.4 is independent of the
antiferromagnetic or ferromagnetic character ofJnn, as reflected in table 1 and figure 2.
Below that value,|Jnn/kTc| seems to be not the same for antiferromagnetic or ferromagnetic
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Figure 2. The dependence of|Jnn/kTc| on the |Jnnn/Jnn| ratio for anS = 5/2 Heisenberg
model with antiferromagnetic ordering of type I or II on an f.c.c. lattice. The n.n. and n.n.n.
exchange constants are represented by, respectively,Jnn/k andJnnn/k while Tc represents the
critical temperature.

Jnn. This result suggests a difference in the behaviour of the system, depending on the sign
of Jnn. If we consider type II withJnn < 0 and the value|Jnnn/Jnn| is decreased, ordering
of type III is reached for|Jnnn/Jnn| < 0.5. The reason is the similarity, regarding exchange
constants signs, between type II withJnn < 0 and type III. At this point it is worth remarking
that |Jnnn/Jnn| is larger than 0.5 for ordering of the second kind and smaller than that value
for ordering of the third kind. On the other hand if type II withJnn > 0 is considered and
|Jnnn/Jnn| is decreased below 0.5 then type III ordering can never be reached as happened
in the previous case (type II,Jnn < 0). The reason is that type III requires all the exchange
interactions to be antiferromagnetic in character(Jnn < 0, Jnnn < 0) while in the case
considered now (type II,Jnn > 0) the interaction between n.n.s is ferromagnetic. Therefore,
the behaviour of the system for small|Jnnn/Jnn| values is expected not to be the same for
Jnn < 0 and Jnn > 0. In addition the evolution of|Jnn/kTc| with the ratio |Jnnn/Jnn|
is shown in figure 2 for ordering of the first and second kinds. This figure beautifully
illustrates the fact that asJnnn decreases with respect to a reference constant value ofJnn

the system becomes less stable (|Jnn/kTc| increases).
Up to here we have studied the critical behaviour of anS = 5/2 Heisenberg model

with antiferromagnetic ordering on an f.c.c. lattice from a high-temperature approximation
(T > Tc). It would be interesting to compare the results shown in table 1 and figure 2
with an analysis of the critical region from low temperatures, that isT < Tc. Lines
investigated the antiferromagnetic behaviour in the f.c.c. cubic lattice using a spin-wave
method [13]. He devised a method for estimating the critical temperature as a function
of the ratio of n.n.n. exchangeJnnn to n.n. exchangeJnn. The results of both procedures,
high-temperature series expansion extrapolated with P.A.s and the spin-wave method from
Lines, are depicted together in figure 3 for comparison. Note that the agreement between
low- and high-temperature approximations is better/worse for larger/smaller|kTc/Jnn| and
|Jnnn/Jnn| values (a more/less stable system).
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Figure 3. A comparison between a spin-wave method and the results presented in this work for
anS = 5/2 Heisenberg model with antiferromagnetic ordering of type I or II on an f.c.c. lattice.
The n.n. and n.n.n. exchange constants are represented by, respectively,Jnn/k andJnnn/k while
Tc represents the critical temperature.

The study of the critical temperature versus exchange constants for the Heisenberg
model on anS = 5/2 f.c.c. lattice with antiferromagnetic ordering of type II has been
usually restricted in the literature to the case ofJnn antiferromagnetic [13, 16]. On the
other hand the application of the final results of some available theories to the analysis of
experimental data is not as straightforward as desired. The available approximations, that
for the model we consider here give the critical temperature as a function of the exchange
constants, require knowledge of the Curie–Weiss constant,θ , of the compound to which the
theory is applied [15, 16]. This additional parameter is not required in the work presented
here (see table 1 and figure 2). Ifθ is obtained from experimental data further measurements
may be needed, while if it is calculated using the mean-field theory [12] the knowledge of
both Jnn andJnnn is then required.

3. Comparison with experimental work

Antiferromagnetic behaviour in a f.c.c. lattice has been reported for various compounds,
for example K2ReCl6 [28, 29], K2ReBr6 [28], MnTe2 [30, 31], [Co(NH3)6][FeCl6] [20] or
the alloy MnFeNi2 [24] for ordering of type I, CoO [32, 33], MnO [3, 33], NiO [33, 34],
α-MnS [2, 35] or the alloy MnFe2Ni [24] for ordering of type II andβ-MnS [36], MnS2

[31] or K2IrCl6 [37, 38] for ordering of type III. In this section the results obtained above
are applied to some real f.c.c.S = 5/2 systems such asα-MnS, MnO, MnTe2 and
[Co(NH3)6][FeCl6]. The predictions are expected to reproduce the experimental values
depending on the continuous or discontinuous character of the transition. Unfortunately,
information about the first- or second-order character of the magnetic transition have only
been found in the literature for MnO [39].

The approximation we present in this work is applied in the following to two compounds
and the results compared with those obtained by another theoretical method. The random-
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phase Green function approximation has been applied to the calculation of superexchange
constants in systems such as MnO andα-MnS [16]. In the case of MnO the exchange
parameters have also been determined from spin-wave calculations [19, 40, 41]. This low-
temperature approximation(T < Tc) gives for this compoundJnn andJnnn values which are
in fair agreement with those deduced from the random-phase Green function approximation
[3]. Neutron diffraction experiments suggest that the magnetic structure of both MnO and
α-MnS is of type II [33, 35]. We have applied the results shown in table 1 to determineTc,
Jnnn/Jnn andJnnn/k for these two compounds by using data reported in the literature [2, 3].
The results are presented in table 2. In this table the first line corresponding toα-MnS
or MnO contains experimental data forTc and calculated data forJnnn/Jnn and Jnnn/k

from the random-phase Green function. There is a good agreement in the prediction of
the magnetic exchange constants as shown in table 2. The prediction ofTc, which is quite
good for α-MnS, shows some differences in the case of MnO (∼7%). In this particular
case the discrepancies between experimental and calculatedTc values could be influenced
by the first-order character of the transition reported for this compound [39].

Table 2. A comparison with experimental work done on someS = 5/2 Heisenberg
antiferromagnets with ordering of types I and II. The critical temperature is represented by
Tc while Jnn/k andJnnn/k represent, respectively, the n.n. and n.n.n. exchange constants. (The
Hamiltonian to which the exchange constants are referred is of the typeH = −2Jnn

∑
Si ·Sj −

2Jnnn

∑
Sk · Sl ) MFT stands for mean-field theory.

Compound Ordering Tc (K) Jnnn/Jnn Jnnn/k (K) Ref.

MnTe2 type I 83 +0.27 −1.6 [30]+ MFT
81 −0.25 +1.5 this work

[Co(NH3)6][FeCl6]a type I 0.50 −0.073 +0.005 [20]
0.51 −0.073 +0.005 this work

α-MnS type II 147 +1.77 −6.2 [2]
148 +1.83 −6.4 this work

MnO type II 117 +1.10 −5.5 [3]
109 +1.14 −5.7 this work

a Jnn/k andJnnn/k are calculated respectively from [20] and this work.

In this paragraph the results obtained in section 2 are applied to overcome the problems
shown by the mean-field theory regarding the model considered here. Neutron diffraction
experiments indicate that MnTe2 orders as an f.c.c. antiferromagnet of type I [31]. Lin
and Hacker have calculated the n.n. and n.n.n. exchange constants by applying the mean-
field theory to the experimental valuesθ = −472 K and Tc = 87.2 K [30]. Using
this approach we have performed a similar calculation but usingTc = 83 K instead of
Tc = 87.2 K. The reason is that the critical temperature associated with the antiferromagnetic
ordering of a system corresponds both to the maximum of the peak in the heat capacity
measurements,Tc = 83 K for MnTe2 [30], and to the value(δχ/δT )max , whereχ represents
the magnetic susceptibility. However the maximum in the susceptibility versus temperature
curve, Tc = 87.2 for MnTe2 [30], is a worse approximation to determine the critical
temperature of an antiferromagnetic system [42]. The values we have obtained for the
exchange constants are shown in table 2. Although the n.n. interaction is found to be
antiferromagnetic in character, mean-field theory indicates that the n.n.n. interaction is also
antiferromagnetic, which is in discrepancy with magnetic ordering of type I. The mean-
field theory is shown to be far too crude an approximation to give satisfactory quantitative
results. Therefore, we have calculatedJnnn/k by using the results obtained in section 2 and
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the data reported in table 2. Following this procedure a value ofJnnn/k = 1.5 K is obtained,
indicating a ferromagnetic interaction between n.n.n.s, which is in good agreement with the
antiferromagnet ordering of type I exhibited by MnTe2.

In the following we present another example of the application of this method to
interpret experimental data. Up to here the results presented in this work have been applied
to purely inorganic systems. [Co(NH3)6][FeCl6] can be regarded as a close example of
a molecular system. Its behaviour would then be of interest in the general area of the
recently named ‘molecular magnetism’ [43, 44]. The magnetic superexchange pathway runs
through not only chemical bonds but also softer interactions. Alternating current (a.c.)
magnetic susceptibility measurements performed on this compound as a function of the
temperature suggest that [Co(NH3)6][FeCl6] orders as an antiferromagnet below 0.5 K. The
only magnetic ion present in the compound is Fe(III) since the Co(III) ions are of low spin
and therefore haveS = 0. The n.n. exchange constantJnn/k = −0.068 K, has been obtained
considering a high-temperature series expansion of the physical susceptibility extrapolated
with P.A.s [20]. However, this method was found to be not sensitive enough to changes in
the n.n.n. exchange constant. DifferentJnnn values gave the same fit to the experimental data
of [Co(NH3)6][FeCl6]. The approximation reported in this work can be used to calculate
without ambiguity the n.n.n. exchange constant. A value ofJnnn/k = +0.005± 0.001 K
is obtained by using table 1 and considering an ordering of type I together with theJnn

and Tc data reported in the literature. A magnetic ordering of the third kind is unstable
since the ratio|θ/Tc| for [Co(NH3)6][FeCl6], which amounts to 9.2 (θ = −4.6 K for
this compound [20]), is smaller than the lower|θ/Tc| limit of existence of type III [13].
On the other hand, the magnetic superexchange pathways in [Co(NH3)6][FeCl6] are much
more favourable between nearest than next-nearest neighbours. Therefore an ordering of
the second kind must be also rejected since the correspondingJnnn/Jnn ratio is too high
(Jnnn/Jnn > 0.5). The critical temperature has been calculated asTc = 0.51 K from Jnn,
Jnnn and the results of section 2. This calculated value is in good agreement with the
experimental data,Tc = 0.50 K (see table 2).

4. Conclusions

The critical temperature has been calculated as a function of the n.n. and n.n.n. exchange
interactions for antiferromagnetic ordering of types I and II and anS = 5/2 Heisenberg
model on an f.c.c. lattice. Both options for type II,Jnn antiferromagnetic and ferromagnetic,
are included. High-temperature series expansions extrapolated with Padé approximants are
shown to be a convenient method to provide valid estimations of critical temperatures
for real magnetic systems. The application of these calculations to some experimental
systems and the comparison with other approximations support the validity of the results
we have obtained. These theoretical predictions provide a useful tool for a straightforward
interpretation and understanding of experimental data. We hope it will be useful for
experimental solid state physicists and chemists interested in magnetic properties of
materials. Similar studies for smaller spin values are under consideration.
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Appendix

Coefficientsan(X, α) of the staggered susceptibility for an f.c.c. lattice and ordering of
types I, II and III (from [25]).

A.1. Type I

a0 = 1 a1 = − 4

3
X(2 − 3α) a2 = 2X

9
·

1 X

1
∣∣∣ −10 +8

α

∣∣∣ −96
α2

∣∣∣ −9 +60

a3 = 4X

135
·

1 X X2

1
∣∣∣ +36 +204 −176

α

∣∣∣ −960 +720
α2

∣∣∣ +360 −3840
α3

∣∣∣ +36 −486 +1464

a4 = 2X

405
·

1 X X2 X3

1
∣∣∣ −126 +2496 −448 −2400

α

∣∣∣ +2256 +20 064 −16 896
α2

∣∣∣ +5304 −41 808 +35 712
α3

∣∣∣ −1152 +24 192 −104 448
α4

∣∣∣ −135 +3060 −14 640 +27 600

a5 = 16X

42 525
·

1 X X2 X3 X4

1
∣∣∣ +1152 −42 276 −3636 +108 792 −141 392

α

∣∣∣ −21 924 +670 236 −73 248 −514 752
α2

∣∣∣ −30 324 −24 094 +2 482 032 −2 179 072
α3

∣∣∣ −50 820 +943 180 −3 287 760 +2 993 760
α4

∣∣∣ +9450 −303 030 +2 219 280 −5 651 520
α5

∣∣∣ +1296 −38 961 +282 024 −828 300 +1 128 360

a6 = 2X

127 575
·

1 X X2 X3 X4 X5

1
∣∣∣ −22 356 +1 144 152 −8 973 444 +2 994 680 +13 853 632 −15 163 392

α

∣∣∣ +395 280 −17 460 768 −2 836 480 +61 894 656 −77 919 232
α2

∣∣∣ +626 472 −24 283 800 +169 210 608 −26 256 384 −125 701 632
α3

∣∣∣ +535 680 −5 024 160 −67 105 920 +442 615 040 −394 024 960
α4

∣∣∣ +1 030 248 −29 841 432 +184 069 408 −432 265 728 +392 003 328
α5

∣∣∣ −165 888 +6 619 968 −71 298 432 +299 235 840 −526 663 680
α6

∣∣∣ −26 082 +941 436 −9 367 506 +36 934 092 −78 518 688 +83 019 648

A.2. Type II

a0 = 1 a1 = −4Xα a2 = 2X

9
·

1 X

1
∣∣∣ −12 −24

α

∣∣∣
α2

∣∣∣ −3 +60

a3 = 4X

135
·

1 X X2

1
∣∣∣ +45 −180 −480

α

∣∣∣ +360 +720
α2

∣∣∣
α3

∣∣∣ +9 +186 −1464

a4 = 2X

405
·

1 X X2 X3

1
∣∣∣ −162 +4392 +4560 −4704

α

∣∣∣ −1152 −1440
α2

∣∣∣ +2880 −7632 −24 192
α3

∣∣∣
α4

∣∣∣ −27 +36 −5856 +27 600
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a5 = 16X

42 525
·

1 X X2 X3 X4

1
∣∣∣ +1512 −66 717 +227 913 +417 480 −161 280

α

∣∣∣ +5859 −21 756 −434 112 −809 088
α2

∣∣∣ −21 105 +188 790 −55 440 −766 080
α3

∣∣∣ −17 640 −177 660 +294 000 +1 058 400
α4

∣∣∣
α5

∣∣∣ +216 −2241 −25 971 +345 300 −1 128 360

a6 = 2X

127 575
·

1 X X2 X3 X4 X5

1
∣∣∣ −29 808 +1 746 576 −18 690 696 +2 077 656 +36 640 128 −21 669 888

α

∣∣∣ −60 912 +464 688 +35 671 104 +8 042 496 −103 907 328
α2

∣∣∣ +452 736 −17 045 928 +18 005 904 +36 282 624 −61 705 728
α3

∣∣∣ +241 056 +905 184 −4 104 576 −5 564 160 −5 160 960
α4

∣∣∣ +292 464 −3 635 568 +21 718 272 −10 453 248 −112 096 512
α5

∣∣∣
α6

∣∣∣ −3726 +76 140 +50 778 +4 618 572 −33 384 288 +83 019 648

A.3. Type III

a0 = 1 a1 = − 4

3
X(2 − α) a2 = 2X

9
·

1 X

1
∣∣∣ −10 +8

α

∣∣∣ −32
α2

∣∣∣ −7 −4

a3 = 4X

135
·

1 X X2

1
∣∣∣ +32 +204 −176

α

∣∣∣ −560 −240
α2

∣∣∣ +280
α3

∣∣∣ +27 −102 −152

a4 = 2X

405
·

1 X X2 X3

1
∣∣∣ −126 +2496 −448 −2400

α

∣∣∣ +1200 +7136 −6144
α2

∣∣∣ +4440 −10 896 −18 816
α3

∣∣∣ −864 +5504 +6144
α4

∣∣∣ −99 +1380 +704 −1584

a5 = 16X

42 525
·

1 X X2 X3 X4

1
∣∣∣ +1152 −42 276 −3636 +108 792 −141 392

α

∣∣∣ −13 293 +496 622 +223 104 −588 224
α2

∣∣∣ −25 704 −134 414 −4368 −534 912
α3

∣∣∣ −39 480 +433 860 −78 960 −1 087 520
α4

∣∣∣ +6930 −128 870 −11 760 +190 400
α5

∣∣∣ +936 −20 001 +29 559 +60 180 −9160

a6 = 2X

127 575
·

1 X X2 X3 X4 X5

1
∣∣∣ −22 356 +1 144 152 −8 953 668 +2 982 136 +13 649 344 −15 407 104

α

∣∣∣ +248 688 −12 189 312 +13 189 760 +38 328 320 −67 963 904
α2

∣∣∣ +537 696 −18 744 144 +79 263 408 +71 439 872 −133 357 056
α3

∣∣∣ +417 888 −991 776 −20 403 712 −43 662 080 −94 230 528
α4

∣∣∣ +781 272 −17 295 864 +34 134 496 +36 555 776 −74 670 336
α5

∣∣∣ −119 808 +3 205 248 −8 232 192 −12 577 280 +3 358 720
α6

∣∣∣ −18 630 +510 732 −2 472 846 −1 232 820 +2 897 696 +102 272
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